首页 | 本学科首页   官方微博 | 高级检索  
     


Multiparameter discrete transforms based on discrete orthogonal polynomials and their application to image watermarking
Abstract:Applications of discrete orthogonal polynomials (DOPs) in image processing have been recently emerging. In particular, Krawtchouk, Chebyshev, and Charlier DOPs have been applied as bases for image analysis in the frequency domain. However, fast realizations and fractional-type generalizations of DOP-based discrete transforms have been rarely addressed. In this paper, we introduce families of multiparameter discrete fractional transforms via orthogonal spectral decomposition based on Krawtchouk, Chebyshev, and Charlier DOPs. The eigenvalues are chosen arbitrarily in both unitary and non-unitary settings. All families of transforms, for varieties of eigenvalues, are applied in image watermarking. We also exploit recently introduced fast techniques to reduce complexity for the Krawtchouk case. Experimental results show the robustness of the proposed transforms against watermarking attacks.
Keywords:Discrete orthogonal polynomials  Multiparameter discrete Krawtchouk transform  Multiparameter discrete Chebyshev transform  Multiparameter discrete Charlier transform  Fast computations  Blind image watermarking
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号