首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental and theoretical modeling of a quarter-circular gate flow
Abstract:Gates are important hydraulic structures and used for flow measurement, water delivery, and water level regulation in open channels and irrigation networks. In this study, the quarter-circular gate is introduced and investigated. The cross section of this gate consists of a quarter circular arc and the lip angle of the gate equals to zero. Discharge coefficient, variation of downstream flow depth, and velocity distribution at opening section of gate were experimentally measured. Using potential flow theory supported by dimensional analysis, equations for discharge coefficient and velocity distribution at gate opening section of quarter-circular gate were derived and then validated using experimental data. The mean percentage error (MPE) of obtained equation for discharge coefficient of quarter-circular gate was calculated as 2.24%, indicating the high precision of the proposed theory. Based on obtained results, downstream flow depth of quarter-circular gate is uniform. Also, velocity distribution at gate opening section is nearly uniform. Discharge coefficient of quarter-circular gate was averagely obtained 55% larger than that of sluice gate. It was also obtained larger than that of radial gate. Elimination of contraction section at downstream of gate opening, which is the main source for energy loss and therefore discharge capacity reduction, is the main reason for larger discharge coefficient of quarter-circular gate.
Keywords:Quarter-circular gate  Potential flow  Discharge coefficient  Contraction section  Velocity distribution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号