首页 | 本学科首页   官方微博 | 高级检索  
     

基于k-means和半监督机制的单类中心学习算法
引用本文:李志圣,孙越恒,何丕廉,侯越先. 基于k-means和半监督机制的单类中心学习算法[J]. 计算机应用, 2008, 28(10): 2513-2516
作者姓名:李志圣  孙越恒  何丕廉  侯越先
作者单位:天津大学,计算机科学与技术学院,大津,300072;天津大学,计算机科学与技术学院,大津,300072;天津大学,计算机科学与技术学院,大津,300072;天津大学,计算机科学与技术学院,大津,300072
基金项目:国家自然科学基金,天津市应用基础研究项目
摘    要:提出了一个基于k means算法框架和半监督机制的single means算法,以解决单类中心学习问题。k means算法实质上是对一种混合高斯模型的期望最大化(EM)算法的近似,对该模型随机生成的多类混合数据集,从目标类中随机标定的初始中心出发,能确定地收敛到该类的实际中心。将single means算法应用到对单类文本中心学习问题中,实验结果表明:在给定目标类中的小标定文本集后,新算法能够有效地改进类的初始中心,且对数据稀疏和方差较大的实际问题具有健壮性。

关 键 词:k-means  单类学习  半监督学习  single-means
收稿时间:2008-04-23
修稿时间:2008-05-27

Algorithm for learning centre of single class based on k-means and semi-supervised mechanism
LI Zhi-sheng,SUN Yue-heng,HE Pi-lian,HOU Yue-xian. Algorithm for learning centre of single class based on k-means and semi-supervised mechanism[J]. Journal of Computer Applications, 2008, 28(10): 2513-2516
Authors:LI Zhi-sheng  SUN Yue-heng  HE Pi-lian  HOU Yue-xian
Affiliation:LI Zhi-sheng,SUN Yue-heng,HE Pi-lian,HOU Yue-xian(College of Computer Science , Technology,Tianjin University,Tianjin 300072,China)
Abstract:A new algorithm named "single-means" was presented to improve the centre estimation of the object class when a hybrid data set had unknown k value and feature of accumulating to centre. Based on that k-means algorithm was equivalent to Expectation Maximum (EM) algorithm on a special hybrid Gaussian model, it was proved that given a data set generated by the above Gaussian model, the true centre of the object Gaussian distribution could be converged by a new algorithm. The new algorithm was applied in learning the centre of single text class. The experiment shows that given a small labeled text set, the new algorithm can get a better centre, and is robust on sparse data set and that with great variance.
Keywords:k-means  single-means
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号