首页 | 本学科首页   官方微博 | 高级检索  
     


Progress in ZnO materials and devices
Authors:David C. Look
Affiliation:(1) Semiconductor Research Center, Wright State University, 45435 Dayton, OH;(2) Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, 45433, OH
Abstract:ZnO is a wide-band-gap semiconductor material that is now being developed for many applications, including ultraviolet (UV) light-emitting diodes, UV photodetectors, transparent thin-film transistors, and gas sensors. It can be grown as boules, as thin films, or as nanostructures of many types and shapes. However, as with any useful semiconductor material, its electrical and optical properties are controlled by impurities and defects. Here, we consider various important donor-type impurities, such as H, Al, Ga, and In, and acceptor-type impurities, such as N, P, As, and Sb. We also examine the effects of a few common point defects, including Zn interstitials, Zn vacancies, O vacancies, and complexes of each. The main experimental techniques of interest here include temperature-dependent Hall-effect and low-temperature photoluminescence measurements, because they alone can provide donor and acceptor concentrations and donor energies. The important topic of p-type ZnO is also considered in some detail.
Keywords:ZnO  defects  impurities  LEDs  TTFTs
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号