首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation,characterization and antibacterial properties of cobalt doped titania nanomaterials
Authors:Dai Shi  He Yang  Xiangxin Xue
Affiliation:1.Institute of Resources and Environment, School of Metallurgy, Northeastern University, Shenyang 110819, China;2.The Faculty of Mechanical Engineering, Shenyang Polytechnic College, Shenyang 110045, China
Abstract:Cobalt-doped titania (Co-TiO2) nanomaterials were synthesized by the sol-gel method at different calcination temperatures. Using Escherichia coli (a), Staphylococcus aureus (b) and Candida albicans (c) as target strains, the antibacterial activity in visible light of the nanomaterials were studied. Co-TiO2 nanomaterials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), Fourier transform infrared spectrum (FT-IR) and X-ray photoelectron spectroscopy (XPS). The Co ions in the Co-TiO2 nanomaterial exist in the form of CoTiO3 phase. The antibacterial properties of Co-TiO2 nanomaterials on E. coli (a), S. aureus (b) and C. albicans (c) were investigated with the oscillating flask method and the inhibition zone method. The nanomaterials calcined at 600℃ exhibit excellent antibacterial activity. The bacteriostatic rates for E. coli, S. aureus and C. albicans reached 99.5%, 91.3% and 93.4% respectively. The diameters of the antibacterial rings were up to 36 mm, 37 mm, 30 mm respectively, and the clarity of the ring was clear. The antibacterial properties of Co-TiO2 nanomaterials were compared with those of traditional silver sol, zinc oxide sol and Zn-doped TiO2 nanomaterials The mechanism of the influences of Co ions doping on the antibacterial activity of TiO2 nanomaterials was also discussed. The doping of Co ions inhibits the particle size of the antibacterial agent and extends the photocatalytic response range, thereby improving the photocatalytic performance of the antibacterial agent.
Keywords:Antibacterial activity  Co-doped  Visible light  TiO2  CoTiO3  
本文献已被 CNKI ScienceDirect 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号