首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进蝙蝠算法优化的FCM聚类算法
引用本文:常雪,石鸿雁. 基于改进蝙蝠算法优化的FCM聚类算法[J]. 计算机与现代化, 2020, 0(5): 29-33,38. DOI: 10.3969/j.issn.1006-2475.2020.05.005
作者姓名:常雪  石鸿雁
作者单位:沈阳工业大学理学院,辽宁 沈阳 110870;沈阳工业大学理学院,辽宁 沈阳 110870
摘    要:针对传统模糊C-均值(Fuzzy C-Means, FCM)聚类算法隐含假设各个样本和各维属性对聚类结果作用相同,导致算法聚类性能降低,以及对初始中心点敏感且易陷入局部最优的问题,提出一种基于改进蝙蝠算法优化的FCM聚类算法。该算法首先采用混沌映射和速度权重来改进蝙蝠算法,然后利用改进蝙蝠算法确定FCM算法的初始聚类中心,最后根据各个样本和各维属性对聚类结果作用不同,采用样本和属性加权法对FCM算法的目标函数重新设计。实验结果表明,改进算法表现出较好的聚类效果。

关 键 词:FCM聚类算法  蝙蝠算法  混沌映射  样本加权  特征加权  
收稿时间:2020-05-21

An Optimal FCM Clustering Algorithm Based on Improved Bat Algorithm
CHANG Xue,SHI Hong-yan. An Optimal FCM Clustering Algorithm Based on Improved Bat Algorithm[J]. Computer and Modernization, 2020, 0(5): 29-33,38. DOI: 10.3969/j.issn.1006-2475.2020.05.005
Authors:CHANG Xue  SHI Hong-yan
Abstract:Aiming at the traditional fuzzy C-means (FCM) clustering algorithm implicitly assumes that each sample and each dimension attribute have the same effect on the clustering results, which leads to the degradation of the clustering performance, and is sensitive to the initial center point and easy to fall into a local optimization, an optimal FCM clustering algorithm based on improved bat algorithm is proposed. Firstly, this algorithm improves the bat algorithm by using Logistic map and velocity weight. Secondly, the improved bat algorithm is used to determine the initial clustering center of FCM algorithm. Finally, according to the different effects of each sample and each dimension attribute on the clustering results, the objective function of FCM algorithm is redesigned by using the sample and attribute weighted method. Contrast experimental results show that the improved algorithm has better clustering effect.
Keywords:FCM clustering algorithm  bat algorithm  Logistic map  sample weighted  feature weighted  
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机与现代化》浏览原始摘要信息
点击此处可从《计算机与现代化》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号