首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental and mathematical modeling of Cr(VI) removal using nano-magnetic Fe3O4-coated perlite from the liquid phase
Authors:Ismail M. Ahmed  Mostafa M. Hamed  Sayed S. Metwally
Affiliation:1.Chemistry Department, College of Science, Jouf University, Skaka, Saudi Arabia;2.Hot Laboratories and Waste Management Center, Atomic Energy Authority, 13759 Cairo, Egypt
Abstract:Modification of perlite using nano-magnetic iron oxide was implemented to produce nano-magneticFe3O4-coated perlite composite (Fe3O4/Perlite). The prepared composite was characterized using Scanning Electron Microscopy, Fourier-Transform Infrared spectroscopy and Powder X-ray Fluorescence. The potentiality of both perlite and Fe3O4/Perlite composite to eliminate Cr(VI) from the environmentally relevant water was investigated. The influence of main factors which could affect the adsorption was studied including; pH of medium, shaking time and Cr(VI) ions concentration. The experimental outcome demonstrated that the modification of perlite by nano-magnetic Fe3O4 showed a significantly enhanced Cr(VI) removal efficiency relative to that of unmodified perlite. From the kinetic studies, the experimental data fitted well with the pseudo-second-order model. Moreover, it proposes that Langmuir isotherm is more adequate than the Freundlich isotherm for both perlite and modified perlite. The results recommended that Fe3O4/Perlite composite had a great potential as an economic and efficient adsorbent of Cr(VI) from contaminated water, which has huge application potential.
Keywords:Nano-magnetic  Composite  Kinetics  Isotherm  Perlite  Adsorption  
本文献已被 ScienceDirect 等数据库收录!
点击此处可从《中国化学工程学报》浏览原始摘要信息
点击此处可从《中国化学工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号