首页 | 本学科首页   官方微博 | 高级检索  
     

基于联合学习的生物医学因果关系抽取
引用本文:刘苏文,邵一帆,钱龙华. 基于联合学习的生物医学因果关系抽取[J]. 中文信息学报, 2020, 34(4): 60-68
作者姓名:刘苏文  邵一帆  钱龙华
作者单位:苏州大学 计算机科学与技术学院,江苏 苏州 215006
基金项目:国家自然科学基金(2017YFB1002101,61976147)
摘    要:生物医学因果关系抽取是BioCreative社区提出的一项评测任务,旨在挖掘生物医学实体间丰富的语义关系,并用生物医学表征语言(biological expression language, BEL)来表示。与传统的实体关系抽取不同,该任务不仅包含实体间因果关系的抽取,还包含实体功能的识别。此前已经提出了一些该任务的解决方法,但均未考虑这两个子任务间的关联性。该文基于多任务的思想,提出一种二元关系抽取和一元功能识别共同决策的联合学习模式。首先两个任务共享底层向量表示,然后利用长短期记忆(long short-term memory, LSTM)网络和门控机制学习两个任务之间的交互表示,最后分别进行分类预测。实验结果表明,该方法能够融合两个子任务的信息,在2015 BC-V测试集上获得了45.3%的F值。

关 键 词:因果关系抽取  联合学习  门控机制  

Biomedical Causality Relation Extraction Based on Joint Learning
LIU Suwen,SHAO Yifan,QIAN Longhua. Biomedical Causality Relation Extraction Based on Joint Learning[J]. Journal of Chinese Information Processing, 2020, 34(4): 60-68
Authors:LIU Suwen  SHAO Yifan  QIAN Longhua
Affiliation:School of Computer Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
Abstract:Biomedical causality extraction is an evaluation task proposed by the BioCreative community to explore the rich semantic relationships between biomedical entities. Unlike traditional entity relation extraction focusing only on binary relationships, this task includes the identification of function acting on one or more entities. Based on the idea of multi-task learning, a joint learning model sharing decision-making by both binary relation extraction and unary function detection is proposed. On the shared word embeddings, LSTM with gated mechanism are employed to learn the interactive representation between two tasks, and the final predictions are performed respectively. The experimental results show that this method can exploit the information of two tasks, achieving 45.3% F-score on the 2015 BC-V dataset.
Keywords:causality relation extraction    joint learning    gated mechanism  
点击此处可从《中文信息学报》浏览原始摘要信息
点击此处可从《中文信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号