首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进YOLOv3算法的带钢表面缺陷检测
引用本文:李维刚,叶欣,赵云涛,王文波. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7): 1284-1292. DOI: 10.3969/j.issn.0372-2112.2020.07.006
作者姓名:李维刚  叶欣  赵云涛  王文波
作者单位:1. 武汉科技大学冶金自动化与检测技术教育部工程研究中心, 湖北武汉 430081;2. 武汉科技大学高温材料与炉衬技术国家地方联合工程研究中心, 湖北武汉 430081;3. 武汉科技大学理学院, 湖北武汉 430081
摘    要:针对热轧带钢表面缺陷检测中存在的检测速度慢、检测精度低等问题,提出了一种改进的YOLOv3算法模型.使用加权K-means聚类算法来优化确定先验框参数,提高先验框(priors anchor)与特征图层(feature map)的匹配度;同时,调整YOLOv3算法的网络结构,融合浅层特征与深层特征,形成新的大尺度检测图层,提高网络对带钢表面缺陷的检测精度.实验结果表明,改进后的YOLOv3算法在NEU-DET数据集上平均精度均值达到了80%,较原有的YOLOv3算法提高了11%;同时检测速度保持在50fps,优于目前其它深度学习带钢表面缺陷检测算法.

关 键 词:目标检测  带钢表面缺陷  YOLOv3  加权K-means  
收稿时间:2019-07-29

Strip Steel Surface Defect Detection Based on Improved YOLOv3 Algorithm
LI Wei-gang,YE Xin,ZHAO Yun-tao,WANG Wen-bo. Strip Steel Surface Defect Detection Based on Improved YOLOv3 Algorithm[J]. Acta Electronica Sinica, 2020, 48(7): 1284-1292. DOI: 10.3969/j.issn.0372-2112.2020.07.006
Authors:LI Wei-gang  YE Xin  ZHAO Yun-tao  WANG Wen-bo
Affiliation:1. Engineering Research Center for Metallurgical Automation and Technology of Ministry of Education, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China;2. National-Provincial Joint Engineering Research Center of High Temperature Materials and Lining Technology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China;3. College of Science, Wuhan University of Science and Technology Wuhan, Hubei 430081, China
Abstract:To solve the problem of slow speed and low accuracy in the surface defect detection of hot rolled strips,an improved YOLOv3 algorithm is proposed.Firstly,the weighting K-means clustering algorithm is put forward to optimize priors anchor's parameters,which can improve the match between priors anchor and feature map.Secondly,the improved network structure of the YOLOv3 algorithm is proposed to improve the detection accuracy,whose shallow features and deep features are combined to form the new large-scale inspection layer.The experiments are carried out on the NEU-DET dataset,the results show that the average accuracy of the improved YOLOv3 algorithm is 80%,which is 11% higher than that of the original algorithm;the detection speed is 50fps,which is faster than other strip surface defect detection algorithms based on deep learning.
Keywords:object detection  strip steel surface defect  YOLOv3  weighting K-means  
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号