首页 | 本学科首页   官方微博 | 高级检索  
     


Thermoelectric Transport in a ZrN/ScN Superlattice
Authors:Mona Zebarjadi  Zhixi Bian  Rajeev Singh  Ali Shakouri  Robert Wortman  Vijay Rawat  Tim Sands
Affiliation:(1) Department of Electrical Engineering, University of California, Santa Cruz, CA 95064, USA;(2) Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
Abstract:Metal/semiconductor superlattices have the potential for a high thermoelectric figure of merit. The thermopower of these structures can be enhanced by controlling the barrier height using high-energy electron filtering. In addition, phonon scattering at interfaces can reduce the lattice contribution to the thermal conductivity. In this paper, we present theoretical and experimental studies of the thermoelectric transport in ZrN/ScN metal/semiconductor superlattices. Preliminary measurement results show an exponential increase in the cross-plane electrical conductivity with increasing temperature, which indicates the presence of the barrier. Fit of the Boltzmann transport-based model with the data indicates a barrier height of 280 meV. The cross-plane Seebeck coefficient of the sample is also measured by combining Seebeck voltage transient measurements with the thermal imaging technique. A Seebeck coefficient of 820 μV/K at room temperature is extracted, which is in good agreement with the simulation result of 800 μV/K. Theoretical calculations predict that the ZrN/ScN structure can exhibit a ZT of 1.5 at 1300 K assuming lateral momentum is conserved and that a ZT of 3 is achievable if the lateral momentum is not conserved.
Keywords:Thermoelectrics  metal/semiconductor interface
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号