首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊C均值聚类的网络入侵检测算法
引用本文:杨德刚. 基于模糊C均值聚类的网络入侵检测算法[J]. 计算机科学, 2005, 32(1): 86-87
作者姓名:杨德刚
作者单位:重庆大学计算机科学与工程学院,重庆,400030;重庆师范大学数学与计算机科学学院,重庆,400047
摘    要:入侵检测已成为网络安全的第二层重要防御线。分析了对新型未知的攻击的入侵检测,提出基于模糊C均值聚类的网络入侵检测算法。用KDD-99数据集的仿真实验结果表明算法的可行性、有效性和可扩展性,并有效提高了聚类检测的检测率,降低了误检率。

关 键 词:入侵检测  聚类分析  模糊C均值聚类

Research of the Network Intrusion Detection Based on Fuzzy Clustering
YANG De-Gang College of Computer Science and Engineering,Chongqing University,Chongqing College of Mathematics and Computer Science,Chongqing Normal University,Chongqing. Research of the Network Intrusion Detection Based on Fuzzy Clustering[J]. Computer Science, 2005, 32(1): 86-87
Authors:YANG De-Gang College of Computer Science  Engineering  Chongqing University  Chongqing College of Mathematics  Computer Science  Chongqing Normal University  Chongqing
Affiliation:YANG De-Gang College of Computer Science and Engineering,Chongqing University,Chongqing 400030 College of Mathematics and Computer Science,Chongqing Normal University,Chongqing 400047
Abstract:The intrusion detection become the second floor defense line of the network security. Analyze to the char- acteristic of the intrusion detection technique for newly and unknown attack,and brings forward algorithm of Network Intrusion Detection based on Fuzzy C-means Clustering. The result of simulations run on the KDD-99 datasets show the feasible,efficient and extensible for unknown intrusion detection,and increase detection rate of the clustering de- tection and decrease the false alarms rate.
Keywords:Intrusion detection  Clustering analysis  Fuzzy c-means clustering algorithm  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机科学》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号