首页 | 本学科首页   官方微博 | 高级检索  
     


Assessing the accuracy of complex refractive index retrievals from single aerosol particle cavity ring-down spectroscopy
Authors:Michael I. Cotterell  Thomas C. Preston  Andrew J. Orr-Ewing
Affiliation:1. School of Chemistry, University of Bristol, Bristol, United Kingdom;2. Department of Atmospheric and Oceanic Sciences and Department of Chemistry, McGill University, Montreal, Canada
Abstract:Cavity ring-down spectroscopy (CRDS) of single, optically manipulated aerosol particles affords quantitative retrieval of refractive indices for particles of fixed or evolving composition with high precision. Here, we quantify the accuracy with which refractive index determinations can be made by CRDS for single particles confined within the core of a Bessel laser beam and how that accuracy is degraded as the particle size is progressively reduced from the coarse mode (>1 μm radius) to the accumulation mode (<500 nm radius) regime. We apply generalized Lorenz–Mie theory to the intra-cavity standing wave to explore the effect of particle absorption on the distribution of extinction cross section determinations resulting from stochastic particle motion in the Bessel beam trap. The analysis provides an assessment of the accuracy with which the real, n, and imaginary, κ, components of the refractive index can be determined for a single aerosol particle.

Published with license by American Association for Aerosol Research

Keywords:Spyros Pandis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号