首页 | 本学科首页   官方微博 | 高级检索  
     


High-strength magnesium alloys for degradable implant applications
Authors:P GundeAC Hänzi  AS SologubenkoPJ Uggowitzer
Affiliation:a Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
b Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland
Abstract:This article describes the design principles deployed in developing high-strength and ductile Mg-Zn-Zr-Ca-Mn(-Yb) alloys based on a concept, which aims to restrict grain growth considerably during alloy casting and forming. The efficiency of the development approach is discussed. Moreover, the microstructure and phase analysis of the alloys subjected to different thermal treatments are presented and the influence of the alloy composition, particularly the addition of Yb, on the evolution of the microstructure is discussed in connection with the mechanical properties of the materials. The newly developed alloys exhibit high strength (yield stress of up to 350 MPa) at considerable ductility (elongation to fracture of up to 19%) in the as-extruded state and reveal age hardening potential (increase in hardness of 10-15% compared to that in the recrystallization heat-treated state). Appropriate heat treatments enable tailoring of the strength-ductility relation. Thermal annealing of the material resulted in a remarkable increase in ductility (elongation to fracture of more than 20% for all heat-treated samples) while high strength is retained (yield stress ranging from 210 to 315 MPa). We attribute the attractive mechanical properties of the developed alloys to their fine-grained microstructure, where the grain boundaries and lattice defects are stabilized by second phase particles formed during casting and thermal treatments.
Keywords:Magnesium alloys  Grain growth restriction  Extrusion  Dynamic recrystallization  Strength  Ductility
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号