首页 | 本学科首页   官方微博 | 高级检索  
     

带自适应感知能力的粒子群优化算法
引用本文:顾宏杰,许力. 带自适应感知能力的粒子群优化算法[J]. 计算机应用, 2011, 31(1): 85-88. DOI: 10.3724/SP.J.1087.2011.00085
作者姓名:顾宏杰  许力
作者单位:1. 浙江大学电气工程学院系统系2. 浙江大学
摘    要:提出一种求解约束优化问题的改进粒子群优化算法。它利用可行性判断规则处理约束条件,更新个体最优解和全局最优解。通过为粒子赋予自适应感知能力,算法能较好地平衡全局和局部搜索,且有能力跳出局部极值,防止早熟。边界附近粒子的感知结果被用来修正其飞行速度以加强算法对约束边界的搜索。实验结果表明,新算法收敛速度快,寻优能力强,能很好地求解约束优化问题。

关 键 词:约束优化问题  粒子群优化  自适应感知能力  约束边界  
收稿时间:2010-07-15
修稿时间:2010-08-30

Perceptive particle swarm optimization algorithm for constrained optimization problems
GU Hong-jie,XU Li. Perceptive particle swarm optimization algorithm for constrained optimization problems[J]. Journal of Computer Applications, 2011, 31(1): 85-88. DOI: 10.3724/SP.J.1087.2011.00085
Authors:GU Hong-jie  XU Li
Affiliation:GU Hong-jie,XU Li(College of Electrical Engineering,Zhejiang University,Hangzhou Zhejiang 310027,China)
Abstract:A new Particle Swarm Optimization(PSO) algorithm was proposed to solve the constrained optimization problems.A feasibility-based rule handled constraints to update the individual optimal solutions and the global optimal solutions.Adaptive perceptive ability of particles can balance the global search and the local search.This ability can also help to avoid prematurity.The velocity of particle around the boundary was revised by the results of perceiving to enhance the search around the boundary.The simulation...
Keywords:constrained optimization problem  Particle Swarm Optimization(PSO)  adaptive perceptive ability  constrained boundary  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号