Low-temperature deposition of polycrystalline silicon thin films by hot-wire CVD |
| |
Authors: | J. K. Rath H. Meiling R. E. I. Schropp |
| |
Abstract: | Polycrystalline silicon films have been prepared by hot-wire chemical vapor deposition (HWCVD) at a relatively low substrate temperature of 430°C. The material properties have been optimized for photovoltaic applications by varying the hydrogen dilution of the silane feedstock gas, the gas pressure and the wire temperature. The optimized material has 95% crystalline volume fraction and an average grain size of 70 nm. The grains have a preferential orientation along the (2 2 0) direction. The optical band gap calculated from optical absorption by photothermal deflection spectroscopy (PDS) showed a value of 1.1 eV, equal to crystalline silicon. An activation energy of 0.54 eV for the electrical transport confirmed the intrinsic nature of the films. The material has a low dangling bond-defect density of 1017 cm3. A photo conductivity of 1.9 × 10−5 Ω−1cm−1 and a photoresponse (σph/σd) of 1.4 × 102 were achieved. A high minority-carrier diffusion length of 334 nm as measured by the steady-state photocarrier grating technique (SSPG) and a large majority-carrier mobility-lifetime (μτ) product of 7.1 × 10−7cm2V−1 from steady-state photoconductivity measurement ensure that the poly-Si : H films possess device quality. A single junction n---i---p cell made in the configuration n+-c-Si/i-poly-Si: H/p-μc-Si : H/ITO yielded 3.15% efficiency under 100 mW/cm2 AM 1.5 illumination. |
| |
Keywords: | Polycrystalline silicon Solar cell Hot-wire chemical vapor deposition |
本文献已被 ScienceDirect 等数据库收录! |