首页 | 本学科首页   官方微博 | 高级检索  
     

改进的深度卷积神经网络对T波分类的应用
作者单位:;1.陕西科技大学电气与控制工程学院;2.陕西科技大学工业自动化研究所
摘    要:针对心电信号T波分类问题和深度卷积神经网络(deep convolutional neural networks,DCNN)出现的过拟合问题,提出了一种改进的深度神经网络算法,通过引入Dropout概念优化网络训练过程,提高算法的泛化能力。就分类准确率、训练次数、卷积核、算法的泛化能力4个方面进行实验对比,结果表明:在分类准确率方面,所提算法的标注结果与专家人工的标注结果接近,且标注重复率均可达98.9%以上;在训练次数方面,可有效减少训练次数,且测试集识别率可达99.31%;选择合适的卷积核个数,最终的测试集识别率可达99.31%。所提算法与BP神经网络、循环神经网络(recurrent neural network, RNN)、DCNN这3种方法相比较,可有效降低DCNN的过拟合问题,提高算法的泛化能力。

关 键 词:深度卷积神经网络  心电信号  T波  泛化能力

Application of improved deep convolutional neural network to T-wave classification
Abstract:
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号