首页 | 本学科首页   官方微博 | 高级检索  
     


Cytoskeletal response of microvessel endothelial cells to an applied stress force at the submicrometer scale studied by atomic force microscopy
Authors:Ma Wanyun  Sun Yunxu  Han Dong  Chu Weiguo  Lin Danying  Chen Dieyan
Affiliation:The Key Laboratory of Atomic and Molecular Nanosciences of Ministry of Education, Department of Physics, Tsinghua University, Beijing, China.
Abstract:Cytoskeleton fibers form an intricate three-dimensional network to provide structure and function to microvessel endothelial cells. During accommodation to blood flowing, stress fiber bundles become more prominent and align with the direction of blood flow. This network either mechanically resists the applied shear stress (lateral force) or, if deformed, is dynamically remodeled back to a preferred architecture. However, the detailed response of these stress fiber bundles to applied lateral force at submicrometer scales are as yet poorly understood. In our in vitro study, the tip, topography probe in lateral force microscopy of atomic force microscopy, acted as a tool for exerting quantitative vertical and lateral force on the filaments of the cytoskeleton. Moreover, the authors developed a formula to calculate the value of lateral force exerted on every point of the filaments. The results show that cytoskeleton fibers of healthy tight junctions in rat cerebral microvessel endothelial cells formed a cross-type network, and were reinforced and elongated in the direction of scanning under lateral force of 15-42 nN. Under peroxidation (H(2)O(2) of 300 micromol/L), the cytoskeleton remodeled at intercellular junctions, and changed over the meshwork structures into a dense bundle, that redistributed the stress. Once mechanical forces were exerted on an area, the cells shrank and lost morphologic tight junctions. It would be useful in our understanding of certain pathological processes, such as cerebral ischemia/reperfusion injury, which maybe caused by biomechanical forces and which are overlooked in current disease models.
Keywords:atomic force microscopy  lateral force microscopy  cytoskeleton  endothelial cells  biomechanics  free radicals
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号