首页 | 本学科首页   官方微博 | 高级检索  
     


Diverse function of aromatase and the N-terminal sequence deleted form
Authors:Y Osawa  T Higashiyama  Y Toma  C Yarborough
Affiliation:Endocrine Biochemistry Department, Hauptman-Woodward Medical Research Institute, Buffalo, NY 14203, U.S.A.
Abstract:The diverse function of human placental aromatase including estradiol 6alpha-hydroxylase and cocaine N-demethylase activity are described, and the mechanism for the simultaneous metabolism of estradiol to 2-hydroxy- and 6alpha-hydroxyestradiol at the same active site of aromatase is postulated. Comparison of aromatase activity is also made among the wild type and N-terminal sequence deleted forms of human aromatase which are recombinantly expressed in Escherichia coli. Aromatase cytochrome P450 was reconstituted and incubated with [6alpha,7alpha-(3)H2,4-(14)C]estradiol, 7-ethoxycoumarin, and [N-methyl-(3)H3]cocaine. 6Alpha-hydroxy[7alpha-(3)H,4-(14)C]estradiol was isolated as the metabolite of estradiol and the 3H-water release method based on the 6alpha-3H label was established. The initial rate kinetics of the 6alpha-hydroxylation gave Km of 4.3 microM, Vmax of 4.02 nmol min(-1) mg(-1), and turnover rate of 0.27 min(-1). Testosterone competed dose-dependently with the 6alpha-hydroxylation and showed the Ki of 0.15 microM, suggesting that they occupy the same binding site of aromatase. The deethylation of 7-ethoxycoumarin showed Km of 200 microM, Vmax of 12.5 nmol min(-1) mg(-1) and turnover rate of 1.06 min(-1). The N-demethylation of cocaine was analysed by the 3H-release method, giving Km of 670 microM, Vmax of 4.76 nmol min(-1) mg(-1), and turnover rate of 0.49 min(-1). All activity was dose-responsively suppressed by anti-aromatase P450 monoclonal antibody MAb3-2C2. The N-terminal 38 amino acid residue deleted form of aromatase P450 was expressed in particularly high yield giving a specific activity of 397 +/- 83 pmol min(-1) mg(-1) (n = 12) of crude membrane-bound particulates with a turnover rate of 2.6 min(-1).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号