首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波神经网络的时变谐波信号检测
引用本文:边海龙,陈光(礻禹),杜天军. 基于小波神经网络的时变谐波信号检测[J]. 中国电机工程学报, 2008, 28(7): 104-109
作者姓名:边海龙  陈光(礻禹)  杜天军
作者单位:电子科技大学自动化工程学院,四川省,成都市,610054
基金项目:国家自然科学基金 , 高等学校博士学科点专项科研项目
摘    要:电力系统中存在大量的由于非线性器件对电网电压电流整流、逆变而产生的时变谐波。该文提出使用小波神经网络(wavelet neural network,WNN)算法对这一类谐波进行检测。利用小波变换的时频聚焦特性可得出信号的时变信息;将小波对信号的自适应时频分割特性引入神经网络,提高神经网络的逼近和收敛性能;给出网络参数的选定方案;确定网络的训练算法;分析算法的时效性;并与其它检测方法做出比较。经仿真试验表明,该文所述的方法提高了检测的精度和效率。

关 键 词:时变谐波检测  小波神经网络  Shannon小波函数  整流电路谐波
收稿时间:2006-11-07

A Method of Time-varying Harmonic Detection Based on the Wavelet Neural Network
BIAN Hai-long,CHEN Guang-ju,DU Tian-jun. A Method of Time-varying Harmonic Detection Based on the Wavelet Neural Network[J]. Proceedings of the CSEE, 2008, 28(7): 104-109
Authors:BIAN Hai-long  CHEN Guang-ju  DU Tian-jun
Abstract:There are many time-varying harmonics caused by the non-linear instruments that convert or invert the current or voltage of the power system. A novel method based on wavelet neural network (WNN) is proposed. Using the time-frequency focus characteristic, the information of time-varying of harmonics can be gotten. The approach and convergence capability are improved by the wavelet transform characteristic of auto-adapt dividing time-frequency plane. And the precept of the WNN characters selection is given, and the algorithm to train the network is proposed. The efficiency of detection harmonics by WNN has been analyzed, and the performance of different methods is compared. The simulation result illustrates the effectiveness of the presented methods.
Keywords:time-varying harmonic  wavelet neural network  Shannon wavelet function  the harmonics in converter
本文献已被 万方数据 等数据库收录!
点击此处可从《中国电机工程学报》浏览原始摘要信息
点击此处可从《中国电机工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号