首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of threshold stress intensity on fracture mode transitions for hydrogen-assisted cracking in AISI 4340 steel
Authors:Su-Il Pyun  Hyo-Keun Lee
Affiliation:(1) Department of Materials Science and Engineering, Korea, Advanced Institute of Science and Technology (KAIST), Chongyangni, Seoul, Korea
Abstract:Fracture mode transition in hydrogen-assisted cracking (HAC) of AISI 4340 steel has been studied from an equilibrium aspect at room temperature with 8.6-mm-thick double cantilever beam (DCB) specimens. The threshold stress intensity,K th , necessary for the occurrence of HAC and the corresponding fracture surface morphology have been determined as a function of hydrogen pressure and yield strength. The K th increases with decrease in hydrogen pressure at a given yield strength and also with decrease in yield strength at a given hydrogen pressure. AsK th increases, the corresponding HAC fracture mode changes from the intergranular (IG) and quasi-cleavage (QC) modes to the microvoid coalescence (MVC) mode. The experimental results indicate that the critical hydrogen concentration for crack extension in the IG mode is higher than that for crack extension in the MVC mode. The fracture mode transition with varying hydrogen pressure and yield strength is discussed by simultaneously considering the micromechanisms for HAC and the hydrogen pressure and yield strength dependencies ofK th .
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号