首页 | 本学科首页   官方微博 | 高级检索  
     


A new optimized least-square sparse channel estimation scheme for underwater acoustic communication
Authors:Anand Kumar
Affiliation:Department of Electronics and Communication Engineering, National Institute of Technology Jamshedpur, Jamshedpur, India
Abstract:In underwater acoustic (UWA) communication, orthogonal frequency division multiplexing (OFDM) is a promising technology that is highly essential to get channel state information meant for channel estimation (CE). Nevertheless, higher complexity, slower convergence, and poor performance, which degrade the performance estimation, are the limitations of the traditional CE methodologies. Thus, by amalgamating the least square (LS)-CE algorithm along with polynomial interpolated black widow optimization (PI-BWO) model, an optimized least square sparse (OLSS) CE algorithm has been proposed to intend for a UWA-OFDM communication system. Formerly, by utilizing the 2's complement shift left turbo encoding (2CSL-TE) methodology, the input signal is encoded. After that, the modulated encoded signal is provided for inverse fast Fourier transform (IFFT) operations; subsequently, they are transferred over the UWA channel toward the receiver OFDM. By employing the OLSS methodology, the received OFDM signal's interference-free region is utilized for sparse CE at the receiver. Regarding symbol error rate (SER), bit error rate (BER), mean square error (MSE), and peak signal-to-noise ratio (PSNR), the proposed model's experiential outcome is evaluated and analogized with the other prevailing methodologies. When analogized with the conventional models, the proposed estimation methodologies achieved better performance.
Keywords:2's complement shift left turbo encoding (2CSL-TE)  inverse fast Fourier transform (IFFT)  optimized least square sparse channel (OLSS) estimation algorithm  polynomial interpolated black widow optimization (PI-BWO)  quadrature phase shift keying (QPSK)
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号