首页 | 本学科首页   官方微博 | 高级检索  
     

基于多变量相空间重构和RBF神经网络的光伏功率预测方法
引用本文:丁 明,虞海彪,刘 练,毕 锐,张 超. 基于多变量相空间重构和RBF神经网络的光伏功率预测方法[J]. 电子测量与仪器学报, 2020, 34(8): 1-7
作者姓名:丁 明  虞海彪  刘 练  毕 锐  张 超
作者单位:1.合肥工业大学 安徽省新能源利用与节能实验室
基金项目:国家重点研发计划(2016YFB0900400)、可再生能源与工业节能安徽省工程实验室开放课题(45000-411104 / 012)资助项目
摘    要:针对光伏功率单变量预测方法的不足,设计了一种新型光伏功率多变量相空间重构预测方法。首先,基于相关性分析,选取实际光伏电站的历史光伏功率和气象因素时间序列组成多变量时间序列;然后,利用C-C法和虚假邻近点(false nearest neighbors,FNN)法重构光伏功率预测的多变量相空间,并以小数据法识别其混沌特性;最后,结合径向基函数(radial basis function,RBF)神经网络强大的非线性拟合能力,建立了基于多变量相空间重构和RBF神经网络的光伏功率预测模型。算例分析表明,相较于单变量预测方法,所提出的多变量相空间重构预测方法性能更加优越。

关 键 词:光伏功率  气象因素  多变量相空间重构  Pearson相关系数  RBF神经网络

Power prediction method of photovoltaic generation based on multivariablephase space reconstruction and RBF neural network
Ding Ming,Yu Haibiao,Liu Lian,Bi Rui,Zhang Chao. Power prediction method of photovoltaic generation based on multivariablephase space reconstruction and RBF neural network[J]. Journal of Electronic Measurement and Instrument, 2020, 34(8): 1-7
Authors:Ding Ming  Yu Haibiao  Liu Lian  Bi Rui  Zhang Chao
Affiliation:1.Anhui New Energy Utilization and Energy Saving Laboratory, Hefei University of Technology
Abstract:In view of the shortcomings of the single variable prediction method of photovoltaic (PV) power, a new multivariable phasespace reconstruction prediction method of PV power is designed. Firstly, based on the correlation analysis, the historical PV power andmeteorological factors time series of the actual PV power plant are selected to form multivariate time series. Then, the multivariablephase space of PV power prediction is reconstructed by C-C method and false nearest neighbors ( FNN) method, and its chaoticcharacteristics are identified by small data method. Finally, combined with the powerful nonlinear fitting ability of radial basis function(RBF) neural network, a PV power prediction model based on multivariate phase space reconstruction and RBF neural network isestablished. The example analysis shows that the proposed multivariate phase space reconstruction prediction method has betterperformance than the single variable prediction method.
Keywords:PV power   meteorological factors   multivariate phase space reconstruction   Pearson correlation coefficient   RBF neural network
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号