首页 | 本学科首页   官方微博 | 高级检索  
     

基于多变量相空间重构和RBF神经网络的光伏功率预测方法
作者姓名:丁明  虞海彪  刘练  毕锐  张超
作者单位:1.合肥工业大学 安徽省新能源利用与节能实验室
基金项目:国家重点研发计划(2016YFB0900400)、可再生能源与工业节能安徽省工程实验室开放课题(45000-411104 / 012)资助项目
摘    要:针对光伏功率单变量预测方法的不足,设计了一种新型光伏功率多变量相空间重构预测方法。首先,基于相关性分析,选取实际光伏电站的历史光伏功率和气象因素时间序列组成多变量时间序列;然后,利用C-C法和虚假邻近点(false nearest neighbors,FNN)法重构光伏功率预测的多变量相空间,并以小数据法识别其混沌特性;最后,结合径向基函数(radial basis function,RBF)神经网络强大的非线性拟合能力,建立了基于多变量相空间重构和RBF神经网络的光伏功率预测模型。算例分析表明,相较于单变量预测方法,所提出的多变量相空间重构预测方法性能更加优越。

关 键 词:光伏功率  气象因素  多变量相空间重构  Pearson相关系数  RBF神经网络
点击此处可从《电子测量与仪器学报》浏览原始摘要信息
点击此处可从《电子测量与仪器学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号