首页 | 本学科首页   官方微博 | 高级检索  
     


Superior Thermoelectric Performance of SiGe Nanowires Epitaxially Integrated into Thermal Micro-Harvesters
Authors:Jose Manuel Sojo-Gordillo  Carolina Duque Sierra  Gerard Gadea Diez  Jaime Segura-Ruiz  Valentina Bonino  Marc Nuñez Eroles  Juan Carlos Gonzalez-Rosillo  Denise Estrada-Wiese  Marc Salleras  Luis Fonseca  Alex Morata  Albert Tarancón
Affiliation:1. Department of Advanced Materials, Catalonia Institute for Energy Research (IREC), Jardins de Les Dones de Negre 1, Sant Adrià de Besòs, Barcelona, 08930 Spain;2. Beamline ID-16B, ESRF: The European Synchrotron, 71, Avenue des Martyr, Grenoble, 38043 France;3. Institute of Microelectronics of Barcelona, IMB-CNM (CSIC), C/Til⋅lers s/n (Campus UAB), Bellaterra, Barcelona, 08193 Spain
Abstract:Semiconductor nanowires have demonstrated fascinating properties with applications in a wide range of fields, including energy and information technologies. Particularly, increasing attention has focused on SiGe nanowires for applications in a thermoelectric generation. In this work, a bottom-up vapour-liquid-solid chemical vapour Deposition methodology is employed to integrate heavily boron-doped SiGe nanowires on thermoelectric generators. Thermoelectrical properties –, i.e., electrical and thermal conductivities and Seebeck coefficient – of grown nanowires are fully characterized at temperatures ranging from 300 to 600 K, allowing the complete determination of the Figure-of-merit, zT, with obtained values of 0.4 at 600 K for optimally doped nanowires. A correlation between doping level, thermoelectric performance, and elemental distribution is established employing advanced elemental mapping (synchrotron-based nano-X-ray fluorescence). Moreover, the operation of p-doped SiGe NWs integrated into silicon micromachined thermoelectrical generators is shown over standalone and series- and parallel-connected arrays. Maximum open circuit voltage of 13.8 mV and power output as high as 15.6 µW cm−2 are reached in series and parallel configurations, respectively, operating upon thermal gradients generated with hot sources at 200 °C and air flows of 1.5 m s−1. These results pave the way for direct application of SiGe nanowire-based micro-thermoelectric generators in the field of the Internet of Things.
Keywords:integration  micro/nano-generators  nanowires  silicon-germanium  thermoelectric  tip-enhanced Raman spectroscopy  X-ray fluorescence
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号