首页 | 本学科首页   官方微博 | 高级检索  
     

轻型合金超高速冲击防护性能和失效机理研究进展
引用本文:张晓琼,王涛.轻型合金超高速冲击防护性能和失效机理研究进展[J].包装工程,2023,44(21):24-35.
作者姓名:张晓琼  王涛
作者单位:太原理工大学 机械与运载工程学院,太原 030024;太原理工大学 机械与运载工程学院,太原 030024;太原理工大学 金属成形技术与重型装备全国重点实验室,太原 030024
基金项目:国家自然科学基金重点专项(U22A20188);国家自然科学基金(51974196,12302479);山西省科技重大专项(202101120401008);山西省基础研究计划(20210302124691)
摘    要:目的 系统总结目前关于轻型金属合金及其复合层板在超高速冲击载荷作用下的冲击损伤模式和失效机理研究进展。方法 搜集整理大量有关研究文献,从实验技术、轻型合金的超高速冲击下可视性的实验现象,以及高应变率加载条件下材料的微观组织结构演化机理三方面对最新研究进展进行梳理与总结。结论 指出了目前轻型合金超高速冲击性能研究中的不足,并提出了未来研究方向的建议,为该领域轻质防护结构设计未来的研究方向提供了参考。

关 键 词:铝合金  镁合金  钛合金  超高速撞击  Whipple结构  冲击防护  失效机理
收稿时间:2023/10/7 0:00:00

Research Progress on Hyper Velocity Impact Protection and Failure Mechanism of Lightweight Alloy
ZHANG Xiao-qiong,WANG Tao.Research Progress on Hyper Velocity Impact Protection and Failure Mechanism of Lightweight Alloy[J].Packaging Engineering,2023,44(21):24-35.
Authors:ZHANG Xiao-qiong  WANG Tao
Affiliation:College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China; College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China;State Key Laboratory of Metal Forming Technology and Heavy Equipment, Taiyuan University of Technology, Taiyuan 030024, China
Abstract:The work aims to summarize the current research progress on impact damage modes and failure mechanisms of light metal alloys and composite laminates subject to hyper velocity impact loads. A large amount of relevant literature was collected and summarized and the latest research progress was sorted out and summarized from experimental techniques, experimental phenomena of visibility of light alloys under hyper velocity impact, and microstructure evolution mechanism of materials under high strain rate load. The shortcomings of current research on hyper velocity impact properties of light alloys are pointed out and some suggestions are put forward for future research directions, which can provide reference for future research directions of lightweight protective structure design in this field.
Keywords:aluminum alloy  magnesium alloy  titanium alloy  hyper velocity impact  Whipple structure  impact protection  failure mechanism
点击此处可从《包装工程》浏览原始摘要信息
点击此处可从《包装工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号