首页 | 本学科首页   官方微博 | 高级检索  
     


3D-Printed Silicone Substrates as Highly Deformable Electrodes for Stretchable Li-Ion Batteries
Authors:Sekar Praveen  Taehyung Kim  Soon Phil Jung  Chang Woo Lee
Affiliation:Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104 South Korea
Abstract:Stretchable energy storage devices receive a considerable attention at present due to their growing demand for powering wearable electronics. A vital component in stretchable energy storage devices is its electrode which should endure a large and repeated number of mechanical deformations during its prolonged use. It is crucial to develop a technology to fabricate highly deformable electrode in an easy and an economic manner. Here, the fabrication of stretchable electrode substrates using 3D-printing technology is reported. The ink for fabricating it contains a mixture of sacrificial sugar particles and polydimethylsiloxane resin which solidifies upon thermal curing. The printed stretchable substrate attains a porous structure after leaching the sugar particles in water. The resulting printed porous stretchable substrates are then utilized as electrodes for Li-ion batteries (LIBs) after loading them with electrode materials. The batteries with stretchable electrodes exhibit a decent electrochemical performance comparable to that of the conventional electrodes. The stretchable electrodes also exhibit a stable electrochemical performance under various mechanical deformations and even after several hundreds of stretch/release cycles. This work provides a feasible route for constructing LIBs with high stretchability and enhanced electrochemical performance thereby providing a platform for realizing stretchable batteries for next generation wearable electronics.
Keywords:3D-printing  Li-ion batteries  silicones  stretchable electrodes
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号