首页 | 本学科首页   官方微博 | 高级检索  
     


Simultaneously Improved Thermal Conductivity and Dielectric Properties of NBR Composites by Constructing 3D Hybrid Filler Networks
Authors:Xing Xie  Dan Yang
Affiliation:1. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China

College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617 P. R. China;2. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029 P. R. China

Abstract:This work aims to address the heat accumulation issue in electronic components during high-frequency operation through the preparation of novel thermally conductive composites. First, polydopamine (PDA) and in-situ growth of silver (Ag) nanoparticles are applied for the surface modification of graphene oxide (GO) and carbon nanotube (CNT) to prepare pGO@Ag and pCNT@Ag hybrid filler, respectively. Then, nitrile butadiene rubber (NBR) is chosen as the polymeric matrix and simultaneously incorporated with both pGO@Ag and pCNT@Ag to prepare polymeric composites with excellent thermal conductivity (TC) and dielectric constant (ɛr). Due to the construction of 3D heat conduction networks by utilizing 2D pGO@Ag and 1D pCNT@Ag, the fabricated NBR composites achieved the maximum TC of 1.0112 W/(mK), which is 636% higher than that of neat NBR (0.1373 W (mK)−1). At the filler loading of 9 vol%, the TC of pGO@Ag/pCNT@Ag/NBR composite is 152% that of GO/CNT/NBR composite (0.6660 W (mK)−1). Moreover, due to electron polarization effect of GO and CNT and micro-capacitor effect of Ag nanoparticles, a large ɛr of 147.12 is attained at 10 Hz for NBR composites. Overall, the development of dielectric polymer materials with high TC is beneficial for enhancing the service life and safety stability of the electronic components.
Keywords:3D networks  dielectric properties  polymeric composites  thermal conductivity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号