首页 | 本学科首页   官方微博 | 高级检索  
     


Construction of Nitrogen-Doped Biphasic Transition-Metal Sulfide Nanosheet Electrode for Energy-Efficient Hydrogen Production via Urea Electrolysis
Authors:Hui Xie  Yafei Feng  Xiaoyue He  Yin Zhu  Ziyun Li  Huanhuan Liu  Suyuan Zeng  Qizhu Qian  Genqiang Zhang
Affiliation:1. Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026 P. R. China;2. Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059 P. R. China
Abstract:Urea-assisted hybrid water splitting is a promising technology for hydrogen (H2) production, but the lack of cost-effective electrocatalysts hinders its extensive application. Herein, it is reported that Nitrogen-doped Co9S8/Ni3S2 hybrid nanosheet arrays on nickel foam (N-Co9S8/Ni3S2/NF) can act as an active and robust bifunctional catalyst for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER), which could drive an ultrahigh current density of 400 mA cm−2 at a low working potential of 1.47 V versus RHE for UOR, and gives a low overpotential of 111 mV to reach 10 mA cm−2 toward HER. Further, a hybrid water electrolysis cell utilizing the synthesized N-Co9S8/Ni3S2/NF electrode as both the cathode and anode displays a low cell voltage of 1.40 V to reach 10 mA cm−2, which can be powered by an AA battery with a nominal voltage of 1.5 V. The density functional theory (DFT) calculations decipher that N-doped heterointerfaces can synergistically optimize Gibbs free energy of hydrogen and urea, thus accelerating the catalytic kinetics of HER and UOR. This work significantly advances the development of the promising cobalt–nickel-based sulfide as a bifunctional electrocatalyst for energy-saving electrolytic H2 production and urea-rich innocent wastewater treatment.
Keywords:hydrogen evolution  N-doped cobalt–nickel sulfide  urea electrolysis  urea oxidation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号