首页 | 本学科首页   官方微博 | 高级检索  
     


3D Printing of Ceramics with Controllable Green-Body Configuration Assisted by the Polyvinyl Alcohol-Based Physical Gels
Authors:Jyun-Yi Chen  Tzu-Hsuan Lo  Chaio Feng  Po-Cheng Lai  Jian-Long Ruan  Chun-Te Wu  Sheng-Sheng Yu
Affiliation:1. Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101 Taiwan;2. Chemical System Research Division, National Chung-Shan Institute of Science and Technology, Taoyuan, 325004 Taiwan
Abstract:Additive manufacturing of ceramics has received intense attention. In particular, 3D-printed ceramics with customized shapes are highly desirable in the chemical industry, aerospace, and biomedical engineering. Nevertheless, developing a simple and cost-effective process that shapes dense ceramics to complex geometries remains challenging because of the high hardness and low ductility of ceramic materials. Extrusion-based printing, such as direct ink writing (DIW), often requires supporting materials that pose additional difficulties during printing. Herein, a simple approach is developed to produce stretchable ceramic green bodies of zirconia and alumina for DIW. The ink is composed of polyvinyl alcohol (PVA) and an aqueous suspension of ceramic powders. Besides the colloidal network formed by the ceramic particles, PVA plays an important role in tuning the printability of the aqueous ink. Through a freeze-thaw process, PVA crystallizes to form physical networks. This strategy provides highly stretchable hydrogel green bodies that can be reprogrammed to complex geometries difficult for common DIW printing. The subsequent drying, debinding, and sintering processes produce ceramics with dense structures and fine mechanical properties. In short, this work demonstrates an efficient method for the DIW of ceramic parts that can be reprogrammed to complex geometries.
Keywords:3D printing  additive manufacturing  ceramics  direct ink writing
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号