首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of hollow carbon-incorporated NiCoM (M = Mn,Cu, Zn) layered double hydroxide nanocages for hybrid supercapacitors
Affiliation:School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), D11 Xueyuan Road, Haidian District, Beijing 100083, PR China
Abstract:Nanostructures and compositions are the most crucial aspects in the design of electrode materials with excellent properties for hybrid supercapacitors (HSCs). In this study, bimetallic CoM-zeolitic imidazolate framework-67 (CoM-ZIF-67, M = Mn, Cu, and Zn) derived nanosheet-constructed hollow carbon-incorporated NiCoM layered double hydroxide nanocages (NiCoM-LDH/C) are successfully synthesized via the thermal annealing and subsequent etching/ion-exchange reaction. As a consequence, the NiCoM-LDH/C materials exhibit significantly improved electrochemical performance. Specifically, the optimized NiCoMn-LDH/C electrode possesses an excellent capacity performance of 888.3 C g?1 at 1 A g?1. Moreover, the HSC device assembled by NiCoMn-LDH/C and active carbon delivers a remarkable energy density of 46.5 Wh kg?1 at a power density of 792.5 W kg?1 and possesses superior cyclic stability with about 92.05% capacity retention after 5000 cycles. This work may offer a feasible and effective approach for the synthesis of carbon-incorporated ternary layered double hydroxide nanocage materials for high-performance HSC applications.
Keywords:Layered double hydroxide  Nanocages  Carbon  Hybrid supercapacitors  Zeolitic imidazolate framework-67
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号