首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of fuel injection timing and injection pressure on performance in a hydrogen direct injection engine
Affiliation:1. Korea Institute of Machinery and Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon 34103, Republic of Korea;2. Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896 Republic of Korea;3. Hyundai Motor Company, 150, Hyundaiyeonguso-ro, Namyang-eup, Hwaseong-si, Gyeonggi-do, 18280, Republic of Korea
Abstract:The in-cylinder hydrogen fuel injection method (diesel engine) induces air during the intake stroke and injects hydrogen gas directly into the cylinder during the compression stroke. Fundamentally, because hydrogen gas does not exist in the intake pipe, backfire, which is the most significant challenge to increasing the torque of the hydrogen port fuel injection engine, does not occur. In this study, using the gasoline fuel injector of a gasoline direct-injection engine for passenger vehicles, hydrogen fuel was injected at high pressures of 5 MPa and 7 MPa into the cylinder, and the effects of the fuel injection timing, including the injection pressure on the output performance and efficiency of the engine, were investigated. Strategies for maximizing engine output performance were analyzed.The fuel injection timing was retarded from before top dead center (BTDC) 350 crank angle degrees (CAD) toward top dead center (TDC). The minimum increase in the best torque ignition timing improved, and the efficiency and excess air ratio increased, resulting in an increase in torque and decrease in NOx emissions. However, the retardation of the fuel injection timing is limited by an increase in the in-cylinder pressure. By increasing the fuel injection pressure, the torque performance can be improved by further retarding the fuel injection timing or increasing the fuel injection period. The maximum torque of 142.7 Nm is achieved when burning under rich conditions at the stoichiometric air-fuel ratio.
Keywords:Hydrogen  In-cylinder direct injection  Fuel injection timing  Fuel injection pressure  Torque  Efficiency
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号