首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic performance for a kW-grade air-cooled proton exchange membrane fuel cell stack
Affiliation:1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China;2. Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China;3. College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, Fujian, China;4. College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
Abstract:In this study, a kW-grade air-cooled proton exchange membrane fuel cell (PEMFC) stack with a dead-end anode (DEA) operation is designed and manufactured. The gravity-assisted drainage principle is applied for the stack to design the wettability of gas diffusion layers (GDLs) and the anode channel geometry, which can help the liquid water that diffuses to the anode to drain out of the anode porous electrode and move down the anode channel outlets. As a result, the stack can stably operate in a long purge interval of 268 s and in a short purge time of 2 s. In addition, using this design, only four small-power fans are employed to pump air to the cathode to provide oxygen for the electrochemical reaction and cool the stack. With a constant load current of 30, 45, or 60 A, the stack output voltage is experimentally tested at various cathode air flow rates (CAFRs). The local temperatures (60 measurement points) inside the stack and the pressure differences across anode channels are also monitored to understand heat dissipation and the back diffusion of liquid water. In a wide range of operating conditions, the designed stack possesses superior and stable voltage output characteristics with relatively uniform temperature distributions. The measured maximum output power is 3.83 kW, and the parasitic powers of fans are only 80~112 W.
Keywords:Proton exchange membrane fuel cell stack  Cathode air flow rate  Dynamic evolution  Temperature  kW-grade  Air-cooled
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号