首页 | 本学科首页   官方微博 | 高级检索  
     


A novel efficient dual-functional electrocatalyst for overall water splitting based on Ni0.85Se/RGO/CNTs nanocomposite synthesized via different nickel precursors
Affiliation:Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China
Abstract:Synthesizing efficient and affordable electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a crucial problem on the way to practical applications for producing clean H2 fuel. Herein, high-efficiency and stable transition metal based electrocatalysts Ni0.85Se-1, Ni0.85Se-2 and Ni0.85Se-3 materials with different morphological characteristics were derived via a one-step hydrothermal route using the Ni(OH)2 and metal-organic framework (Ni-BDC and Ni-BTC) as precursors, respectively. The results showed that Ni0.85Se-2 exhibited excellent electrocatalytic activity. Subsequently, introducing carbon nanomaterials (RGO and CNTs) to form Ni0.85Se/RGO/CNTs nanocomposite material further improves the catalytic activity owing to high conductivity. The resulting Ni0.85Se/RGO/CNTs nanocomposites electrocatalyst showed a low overpotential of 232 mV and 165 mV and a low Tafel slope of 64 mV dec?1 and 98 mV dec?1 when the current density was 10 mA cm?2 for OER and HER, respectively. In addition, the Ni0.85Se/RGO/CNTs nanocomposites were used as an anode and cathode of the water electrolysis device and the overall water splitting performance was investigated. The results show just a voltage of 1.59 V was required when the current density was 10 mA cm?2 and good overall water splitting stability for 20 h. The outstanding electrocatalytic performance of Ni0.85Se/RGO/CNTs is mostly due to its noticeable porous structure, the high conductivity and the large surface area that came from RGO and CNTs.
Keywords:RGO  CNTs  HER & OER  Electrocatalytic overall water splitting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号