首页 | 本学科首页   官方微博 | 高级检索  
     


Pt–Co nanoparticles anchored by ZrO2 for highly efficient and durable oxygen reduction reaction in H2-air fuel cells
Affiliation:CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, PR China
Abstract:Synthesis of Pt-based catalysts with high activity and durability for oxygen reduction reaction (ORR) remains a very challenging task in the field of fuel cells. Here, Co-doped Pt nanoparticles (NP) with surface-defect ZrO2 are supported on the multi-walled carbon nanotubes (MWCNTs) (denoted as Pt–Co + ZrO2/MWCNTs). The Pt–Co + ZrO2/MWCNTs displays an ORR mass activity of 0.98 A mgPt?1 at 0.9 V, which is 4.1-fold higher than that of the commercial Pt/C (0.238 A mgPt?1). Further durability test shows that the Pt–Co + ZrO2/MWCNTs remains nearly unchanged ORR mass activity after 50000 accelerated durability testings (ADTs). Based on the mass performance and surface performance, the fuel cell with Pt–Co + ZrO2/MWCNTs cathode has far better power performance than that with commercial Pt/C. Moreover, the fuel cell with Pt–Co + ZrO2/MWCNTs cathode undergo only a 6.1% maximum power loss after 50000 ADTs. However, that with commercial Pt/C cathode after 30000 ADTs has 39.6% maxinum power loss. More impressively, compared to the 220 mV loss of Pt/C after 30000 ADTs, the Pt–Co + ZrO2/MWCNTs cathode also displays only 20 mV loss at 0.8 A/cm2 after 50000 ADTs. The enhanced intrinsic activity of Pt–Co + ZrO2/MWCNTs may be attributed to the Co-doped Pt NPs and interface effect of Co-doped Pt NPs and surface defect-rich ZrO2.
Keywords:Oxygen reduction reaction  Pt  Co  Interface  Proton exchange membrane fuel cells
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号