首页 | 本学科首页   官方微博 | 高级检索  
     


Reducing stranded asset risk in off-grid renewable mine sites by including hydrogen production
Affiliation:Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Microstructure and Properties of Materials (IEK-2), D-52425, Germany
Abstract:Mine sites are an ideal candidate to be decarbonised through the installation of variable renewables and storage. However, the operation of mine sites is dependent on many factors, including mineral price, which can vary significantly, leading to periods of inactivity. Therefore, for sites that have invested in renewable generation and storage, there exists a potential of stranded assets, which negatively impact their business case, potentially reducing investment in such equipment and, therefore, decarbonisation potential. The current study therefore has investigated the potential of using variable renewable energy coupled with thermal energy storage and biodiesel to supply heat to a mine site. With the base case established, the economic impact of lower or no mine operations on the net present value were evaluated. To reduce the impact of mine turndown, the potential of installing a hydrogen production facility in an effort to utilise the stranded assets was also undertaken. Preliminary results show the base case to be very economical with a net present cost of $151.4 M after 30 operational years. This value was reduced to $45.7 M and -$81.1 M if the mine only operated at half capacity or did not operate at all, respectively. The addition of hydrogen production powered by the installed variable renewable generation resulted in a slightly better net present value of $174.7 M if the mine operated as normal for 30 years. For the two other cases, the installation of an electrolyser resulted in significantly better results than if it had not been installed for the half capacity and no operation cases with net present costs of $90.9 M and -$7.1 M, respectively. A sensitivity analysis on these results show that while the hydrogen production only plays a minor role in site savings, a price of between $1.1/kg to $2.0/kg is necessary for the system to be economically justifiable. Therefore, the current study shows that the addition of an electrolyser can significantly reduce the risk of stranded assets in fully renewable mine sites by providing an additional revenue stream during mine turndown events.
Keywords:Thermal energy storage  Hydrogen production  Electrolyser  Renewable mining  CAPEX"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0035"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Capital Expenditure  CST"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0045"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Concentrated Solar Thermal  ECTES"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0055"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Electrically Charged Thermal Energy Storage  Hydrogen  IRR"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0075"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Internal Rate of Return  NPV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0085"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Net Present Value  OPEX"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0095"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Operational Expenditure  Solar PV"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0105"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Solar Photovoltaic  TES"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0115"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Thermal Energy Storage  VRE"  },{"  #name"  :"  keyword"  ,"  $"  :{"  id"  :"  kwrd0125"  },"  $$"  :[{"  #name"  :"  text"  ,"  _"  :"  Variable Renewable Energy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号