首页 | 本学科首页   官方微博 | 高级检索  
     


Design analysis and tri-objective optimization of a novel integrated energy system based on two methods for hydrogen production: By using power or waste heat
Affiliation:1. School of Mechatronic Engineering, Xi''an Technological University, Xi''an, 710021, China;2. Mechanical Engineering Department, School of Engineering, Australian College of Kwait, Kuwait;3. Mechanical Engineering Department, College of Engineering, Prince Sattam Bin Abdulaziz University, AlKharj, 16273, Saudi Arabia;4. School of Mechanical Engineering, Urmia University, Urmia, Iran
Abstract:Hydrogen is rapidly turning into one of the essential energy carriers for future sustainable energy systems. The main reason for this is the possibility of off-peak excess power production and storage of renewable stations such as wind farms, photovoltaic plants, etc. For hydrogen (itself) or its sub-productions methanol, ammonia, etc. Such energy systems are so-called power2X technologies. For hydrogen and other biogases, using a fuel cell is a promising method for returning the fuel to the power grid or electric cars in the form of electricity. In this paper, a novel hybrid energy system consisting of a molten carbonate fuel cell (MCFC) and different options to generate hydrogen from the waste heat of the MCFC is investigated. The system consists of two scenarios of weather using proton exchange membrane electrolyzer (PEME) of vanadium chloride (VCL) cycle. The article presents a comprehensive thermodynamic, economic, and environmental analysis of the system optimized by tri-objective optimization (as an innovative optimization) methods. The aim of the optimization task here is to minimize the costs and emissions while maximizing efficiency. A parametric study is conducted to see the effect of different design parameters on the system's performance. Results demonstrate that fuel utilization factor, stack temperature, and current density have the most critical effect on the system performance. In addition, the system coupled with the VCL cycle exhibits better performance than the system with PEME. In addition, at the optimized point, the efficiency, cost rate, and emission become 69.28%, 3.73 ($/GJ), and 1.16 kg/kWh, respectively. In addition, the produced hydrogen in VCL and PEME are 585 kg/day and 293 kg/day respectively.
Keywords:MCFC  Vanadium chloride  Tri-objective optimization  Green hydrogen production
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号