首页 | 本学科首页   官方微博 | 高级检索  
     


Methanol steam reforming over PdZn/ZnAl2O4/Al2O3 in a catalytic membrane reactor: An experimental and modelling study
Affiliation:1. Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain;2. Department of Fluid Mechanics, Universitat Politècnica de Catalunya, EEBE, Eduard Maristany 10-14, 08019, Barcelona, Spain
Abstract:A catalytic membrane reactor equipped with Pd–Ag metallic membranes and loaded with PdZn/ZnAl2O4/Al2O3 catalytic pellets was tested for the methanol steam reforming reaction (S/C = 1) aimed at producing a pure hydrogen stream for PEM fuel cell feeding. The catalyst was prepared in two steps. First, commercial γ-Al2O3 pellets were impregnated with ZnCl2 and calcined at 700 °C to obtain a ZnAl2O4 shell, and subsequently impregnated with PdCl2 and reduced at 600 °C to obtain PdZn alloy nanoparticles. The catalyst was tested both in a conventional packed bed reactor and in a catalytic membrane reactor. A 3D CFD non-isothermal model with mass transfer limitations was developed and validated with experimental data. The reactions of methanol steam reforming, reverse water-gas shift and methanation were modeled under different pressure, temperature and feed load values. The model was used to study and simulate the CMR under different operation conditions.
Keywords:Hydrogen  CFD model  Methanol steam reforming  Catalytic membrane reactor  Palladium-based catalyst  Pd–Ag membranes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号