首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of ignition,initial pressure and temperature on the lower flammability limit of hydrogen/air mixture
Affiliation:1. State Key Laboratory of Fine Chemicals, Department of Chemical Machinery and Safety Engineering, Dalian University of Technology, 2 Linggong Rd., Dalian, 116024, China;2. Beijing Institute of Aerospace Testing Technology, Beijing, 100074, China
Abstract:In this research, the effect of ignition, initial pressure (50–250 kPa) and temperature (20–100 °C) on the lower flammability limit (LFL) of hydrogen/air mixture are investigated experimentally and numerically. The results show that with the ignition energy increases, the LFL of hydrogen decreases. When high voltage direct current power supply (HVDC) is used, the time for the flame to propagate to the edge of the window is much shorter than that of 15 kV high voltage transformer (15 kV HVT) ignition. As the initial pressure increases, the LFL of hydrogen increases. When HVDC is used, the time to reach the peak deflagration overpressure increases with the increase of initial pressure. However, when 15 kV HVT is used, the time to reach the peak deflagration overpressure is almost the same. As the initial temperature increases, the LFL of hydrogen decreases. The change of the LFL of hydrogen with 15 kV HVT ignition is greater than that of HVDC. Through the analysis of chemical kinetic factors, the effect of OH radical generation when the LFL of hydrogen increases with the increase of initial pressure is revealed.
Keywords:Hydrogen  Lower flammability limit  Ignition  Initial pressure  Initial temperature  Flame morphology
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号