首页 | 本学科首页   官方微博 | 高级检索  
     


Construction of gradient catalyst layer anode by incorporating covalent organic framework to improve performance of direct methanol fuel cells
Affiliation:1. Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China;2. Weifu High-Technology Group Co., Ltd, Wuxi 214145, China;3. MOE Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China;4. Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom
Abstract:Improving cell performance is the most demanded task in direct methanol fuel cell (DMFC) research, although this fuel cell has several intrinsic features like high energy density, moderate operating temperature and environmentally friendly operation. The catalyst layer (CL) is the site of electrochemical reactions directly affecting the cell performance. Accordingly, the structure and preparation of the CL are crucial in optimizing performance. In this study, a novel gradient catalyst layer (G-CL) for the anode of DMFC is developed and better performance is obtained compared with that of single catalyst layer (S-CL) anode. A G-CL anode is composed of an outer CL of covalent organic framework (COF) materials-mixed catalyst near the microporous layer (MPL) and a conventional inner CL near the membrane side. Different loading of Pt catalyst in the two layers. Therefore, in the G-CL structure, there existed a catalyst concentration gradient and porosity gradient. Anode electrodes are characterized morphologically and electrochemically and the performance of individual cells containing such G-CL designs is measured. The results indicate that incorporation of the appropriate amount of COF materials enables the outer CL not only to have a larger electrochemical surface area (ECSA) and expose more catalytic active sites but also holds a strong proton transfer ability to improve the methanol oxidation reaction (MOR) performance. Due to the presence of the inner layer of the CL formed the methanol gradient oxidation process. With the same platinum-ruthenium (Pt–Ru) catalyst loading, the 5 wt.% COF G-CL anode structure exhibited lower methanol crossover and higher power density (nearly 11% increment) compared with that of the S-CL anode with high methanol concentration (8 M) at 60 °C, showing the promising potential in further applications.
Keywords:Direct methanol fuel cell  Gradient anode catalyst layer  Covalent organic framework  Electrochemical surface area  Methanol crossover
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号