首页 | 本学科首页   官方微博 | 高级检索  
     


Design,modeling and optimization of a renewable-based system for power generation and hydrogen production
Affiliation:School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran
Abstract:Due to the environmental concerns caused by fossil fuels, renewable energy systems came into consideration. In this study, a renewable hybrid system based on ocean thermal, solar and wind energy sources were designed for power generation and hydrogen production. To analyze the system, a techno-economic model was exerted in order to calculate the exergy efficiency as well as the cost rate and the hydrogen production. The main parameters that affect the system performance were identified, and the impact of each parameter on the main outputs of the system was analyzed as well. The thermo-economic analysis showed that the most effective parameters on the exergy efficiency and total cost rate are the wind speed and solar collector area, respectively. To reach the optimum performance of the system, multi-objective optimization, by using genetic algorithm, was applied. The optimization was divided into two separate case studies; in case A, the cost rate and the exergy efficiency were considered as two objective functions; and in case B, the cost rate and the hydrogen production were assigned as two other objective functions. The optimization results of the case A showed that for the total cost rate of 30.5 $/h, the exergy efficiency could achieve 35.57%. While, the optimization of the case B showed that for the total cost rate of 28.06 $/h, the hydrogen production rate could reach 5.104 kg/h. Furthermore, after optimizing, an improvement in exergy efficiency was obtained, approximately 19%.
Keywords:Renewable energy  Hydrogen production  Economic analysis  Ocean thermal  Multi-objective optimization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号