首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling and performance analysis of renewable hydrogen energy hub connected to an ac/dc hybrid microgrid
Affiliation:Faculty of Engineering and Information Sciences, University of Wollongong, New South Wales, 2522, Australia
Abstract:This paper proposes a system modeling and performance analysis of a renewable hydrogen energy hub (RHEH) connected to an ac/dc hybrid microgrid (MG). The proposed RHEH comprises a photovoltaic (PV)-based renewable energy source (RES) as the primary source, a proton exchange membrane fuel cell (PEMFC) as the secondary power source, and a proton exchange membrane electrolyzer (PEMELZ) that can generate and store hydrogen in a hydrogen tank. All these resources are directly connected at the dc bus of the ac/dc microgrids. The PEMFC operates and utilizes the hydrogen from the hydrogen tank when the energy generated by RES cannot meet the load demand. A coordinated power flow control approach has been developed for the RHEH to mitigate the mismatch between generation and demand in the ac/dc microgrid and produce renewable hydrogen when renewable power is in excess. The paper also proposes a modified hybrid Perturb & Observe-Particle Swarm Optimization (Hybrid PO-PSO) algorithm to ensure the maximum power point tracking (MPPT) operation of the PV and the PEMFC. The operation of the proposed RHEH is validated through simulations under various critical conditions. The results show that the proposed RHEH is effective to maintain the system power balance and can provide power-to-hydrogen and hydrogen-to-power when required.
Keywords:ac/dc microgrid  Electrolyzer  Energy hub  Fuel cell  Maximum power point tracking  Renewable hydrogen
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号