首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms of hydrides’ nucleation and the effect of hydrogen pressure induced driving force on de-/hydrogenation kinetics of Mg-based nanocrystalline alloys
Affiliation:1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi''an, 710072, China;2. School of Materials and Chemical Engineering, Xi''an Technological University, Xi''an, 710072, China
Abstract:Aiming to gain insight on the hydrogen storage properties of Mg-based alloys, partial hydrogenation and hydrogen pressure related de-/hydrogenation kinetics of Mg–Ni–La alloys have been investigated. The results indicate that the phase boundaries, such as Mg/Mg2Ni and Mg/Mg17La2, distributed within the eutectics can act as preferential nucleation sites for β-MgH2 and apparently promote the hydrogenation process. For bulk alloy, it is observed that the hydrogenation region gradually grows from the fine Mg–Ni–La eutectic to primary Mg region with the extension of reaction time. After high-energy ball milling, the nanocrystalline powders with crystallite size of 12~20 nm exhibit ameliorated hydrogen absorption/desorption performance, which can absorb 2.58 wt% H2 at 368 K within 50 min and begin to desorb hydrogen from ~508 K. On the other side, variation of hydrogen pressure induced driving force significantly affects the reaction kinetics. As the hydrogenation/dehydrogenation driving forces increase, the hydrogen absorption/desorption kinetics is markedly accelerated. The dehydrogenation mechanisms have also been revealed by fitting different theoretical kinetics models, which demonstrate that the rate-limiting steps change obviously with the variation of driving forces.
Keywords:Hydrogen storage  Mg-based alloys  Nucleation behaviors  Driving force  Rate-liming steps
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号