Predicting aspect-based sentiment using deep learning and information visualization: The impact of COVID-19 on the airline industry |
| |
Affiliation: | 1. Monte Ahuja College of Business, Cleveland State University, Cleveland, USA;2. Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan |
| |
Abstract: | This study investigates customer satisfaction through aspect-level sentiment analysis and visual analytics. We collected and examined the flight reviews on TripAdvisor from January 2016 to August 2020 to gauge the impact of COVID-19 on passenger travel sentiment in several aspects. Till now, information systems, management, and tourism research have paid little attention to the use of deep learning and word embedding techniques, such as bidirectional encoder representations from transformers, especially for aspect-level sentiment analysis. This paper aims to identify perceived aspect-based sentiments and predict unrated sentiments for various categories to address this research gap. Ultimately, this study complements existing sentiment analysis methods and extends the use of data-driven and visual analytics approaches to better understand customer satisfaction in the airline industry and within the context of the COVID-19. Our proposed method outperforms baseline comparisons and therefore contributes to the theoretical and managerial literature. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|