首页 | 本学科首页   官方微博 | 高级检索  
     


Adaptive estimation of PEMFC stack model parameters - An experimental verification
Affiliation:1. Department of Electrical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates;2. Department of Chemical Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
Abstract:The growing popularity of using proton-exchange membrane fuel cells (PEMFCs) stacks in stationary, portable, and transportation applications is driving researchers to develop proper dynamic models for PEMFCs. These models are used to accurately capture the electrical characteristics and runtime performance. This work proposes a well-known equivalent circuit model of a battery, to be modified and used as a model for a PEMFC stacks voltage-current characteristics. This model is modified by finding suitable functions to model the open circuit voltage and the series resistance, required to model the electrical performance of a 200-W PEMFC stack. The paper also shows that the existing adaptive parameters estimation (APE) technique for Li-ion battery parameters estimation is also able to estimate parameters of the PEMFC stack's model. The model parameters are estimated using the APE technique that requires only five experiments. The model is validated experimentally under different load conditions for a 200-W PEMFC stack supplied from a hydrogen cylinder (voltage error ?0.2 V to 0.5 V), and a 30-W PEMFC stack supplied from a fuel stick (voltage error ?0.2 V–0.4 V). The results show that the parameters estimation methodology works well across PEMFC stacks of different sizes with different input fuel intake configurations, with a minimal terminal voltage estimation error in the order of millivolts. Open circuit voltage measurements (OCV) show that the OCV curve starts at a little lower than 31 V, declines slowly to around 30 V for a normalized hydrogen flow rate of 0.6, after which there is a sudden linear decline in OCV was observed. Most of the data has absolute estimation error less than 0.1 V. In fact, the terminal voltage estimation error across all tests, with different current discharge profiles, lies between ?0.2 and 0.2 V only. Also, 95.84% of the error samples lie between ±0.1% error.
Keywords:Proton-exchange membrane fuel cell stack  Dynamic model  Adaptive parameters estimation  Universal adaptive stabilization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号