首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional ZnCo/MoS2–Co3S4/NF heterostructure supported on nickel foam as highly efficient catalyst for hydrogen evolution reaction
Affiliation:School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418, Shanghai, PR China
Abstract:Exploring inexpensive and earth-abundant electrocatalysts for hydrogen evolution reactions is crucial in electrochemical sustainable chemistry field. In this work, a high-efficiency and inexpensive non-noble metal catalysts as alternatives to hydrogen evolution reaction (HER) was designed by one-step hydrothermal and two-step electrodeposition method. The as-prepared catalyst is composed of the synergistic MoS2–Co3S4 layer decorated by ZnCo layered double hydroxides (ZnCo-LDH), which forms a multi-layer heterostructure (ZnCo/MoS2–Co3S4/NF). The synthesized ZnCo/MoS2–Co3S4/NF exhibits a small overpotential of 31 mV and a low Tafel plot of 53.13 mV dec?1 at a current density of 10 mA cm?2, which is close to the HER performance of the overpotential (26 mV) of Pt/C/NF. The synthesized ZnCo/MoS2–Co3S4/NF also has good stability in alkaline solution. The excellent electrochemical performance of ZnCo/MoS2–Co3S4/NF electrode originates from its abundant active sites and good electronic conductivity brought by the multilayer heterostructure. This work provides a simple and feasible way to design alkaline HER electrocatalysts by growing heterostructures on macroscopic substrates.
Keywords:Hydrogen evolution reaction  Multi-layer  Heterostructures  Electrocatalysts
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号