首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于深度学习的谣言检测方法
作者姓名:姜敏敏  班 浩  赵 力
作者单位:南京信息职业技术学院网络与通信学院;东南大学信息科学与工程学院
摘    要:为了更好地学习网络谣言传播过程中的特征变化,提出了一种基于多跳的多模态融合的网络谣言检测方法。该方法采用faster RCNN提取视觉特征,通过GRU提取词特征,通过BERT提取句子特征,在提取词句基本特征后,利用RGCN实现图中不同节点间的信息传递。提取多模态特征后利用多跳注意力机制实现谣言检测。该方法可以较好解决诸如否定、歧义和长距离依赖等复杂问题,可以在更短路径上捕获远程依赖。通过与其它谣言检测方法的对比实验,验证了该方法在谣言检测和早期谣言检测领域应用的有效性。

关 键 词:谣言检测  深度学习  多跳网络  注意力机制  多模态
点击此处可从《电子器件》浏览原始摘要信息
点击此处可从《电子器件》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号