首页 | 本学科首页   官方微博 | 高级检索  
     


Achievement of excellent hydrogen sorption through swift hydrogen transport in 1:2 Mg(NH2)2–LiH catalyzed by Li4BH4(NH2)3and carbon nanostructures
Affiliation:1. Hydrogen Energy Center, Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India;2. Center for Energy Materials Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
Abstract:The present studies deal with the catalytic character of carbon nanostructure (Graphene (Gr) and single-wall carbon nanotubes (SWNTs), and their composite versions) on the hydrogen sorption behavior of 1:2 Mg(NH2)2–LiH/Li4BH4(NH2)3. The inclusion of an optimal quantity of 2 wt% SWNTs in Mg(NH2)2–2LiH/Li4BH4(NH2)3 resulted in superior hydrogen sorption over 2 wt% Gr and 2 wt% of (Gr and SWNT) composite. The onset desorption temperature for SWNTs catalyzed Mg(NH2)2–2LiH/Li4BH4(NH2)3 is 108 °C which is 32 °C, 44 °C lower compared to Gr catalyzed Mg(NH2)2–2LiH/Li4BH4(NH2)3 and uncatalyzed Mg(NH2)2–2LiH/Li4BH4(NH2)3 respectively. The de/re-hydrogenation kinetics of the SWNT catalyzed sample has been found to be 4.02 wt% and 4.63 wt% within 15min at 170 °C and 7 MPa H2 pressure, correspondingly. The activation energy for SWNT catalyzed Mg(NH2)2–2LiH/Li4BH4(NH2)3 has been found to be 69.75 kJ/mol. The SWNT catalyzed Mg(NH2)2–2LiH/Li4BH4(NH2)3 shows good cyclic stability (almost no degradation) up to 10 cycles. The better hydrogen sorption for SWNTs is attributed to the ballistic transport of hydrogen atoms within and across the amide/hydride matrix. In contrast, Gr sheets agglomerate, which adversely affects hydrogen sorption from Gr and Gr+SWNT composites. A hydrogen sorption mechanism has been proposed based on structural, microstructural, Fourier-transform infrared spectroscopy, and Raman characterization results.
Keywords:Hydrogen storage  Complex hydride  Amide/imide  Graphene  Carbon nanostructures  Ballistic transport
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号