首页 | 本学科首页   官方微博 | 高级检索  
     


Improved charge transfer and morphology on Ti-modified Cu/γ-Al2O3/Al catalyst enhance the activity for methanol steam reforming
Affiliation:Engineering Research Center of Large-Scale Reactor Engineering and Technology of Ministry of Education, Department of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
Abstract:The metal-oxide interaction has been considered as an effective factor for catalytic performance in methanol steam reforming. In this work, Ti modified Cu/γ-Al2O3/Al catalyst was prepared by anodization technology. It is found that the addition of Ti can largely increase the surface area of the carrier and thus improve the dispersion of copper. The co-existence of Ti4+ and Ti3+ makes the charge transfer between Cu and Ti easier, which improves the redox performance of copper. The DFT calculations reveal that Ti also enhance the adsorption capacity of water and methanol on the surface of the catalysts. Besides, Ti also reduce the acid density on the carrier, inhibit methanol dehydration reaction and thereby reduce the selectivity of the DME. The optimal catalyst CuTi1.9/γ-Al2O3/Al achieves nearly 100% conversion at 275 °C, while the methanol conversion of Cu/γ-Al2O3/Al is 82%. And the H2 output of CuTi1.9/γ-Al2O3/Al reached 69.17 mol/(kgcat·h) at 300 °C.
Keywords:Methanol steam reforming  Hydrogen production  Charge transfer  Acid sites
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号