首页 | 本学科首页   官方微博 | 高级检索  
     


Utilizing coke oven gases as a fuel for a cogeneration system based on high temperature proton exchange membrane fuel cell; energy,exergy and economic assessment
Affiliation:Department of Mechanical Engineering, University of Tabriz, Tabriz
Abstract:Based on a high temperature proton exchange membrane fuel cell (HT-PEMFC), a cogeneration system is proposed to produce heat and power. The system includes a coke oven gas steam reformer, a water gas shift reactor, and an afterburner. The system is analyzed in detail considering the energy, exergy and economic viewpoints. The analyses reveal the importance of HT-PEMFC in the system and according to the results, 9.03 kW power is generated with energy and exergy efficiencies of 88.2% and 26.2%, respectively and the total product unit cost is calculated as 91.8 $/GJ. Through a parametric study the effects on system performance are studied of such variables as the current density, fuel cell and reformer operating temperatures, and cathode stoichiometric ratio. It is found that an increase in the fuel cell temperature and/or a decrease in the reformer temperature enhance the exergy efficiency. The exergy efficiency is also maximized at the cathode stoichiometric ratio of 2.4. By performing a two-objective optimization using genetic algorithm, the best operating point is determined at which the exergy efficiency is (32.86%) and the total product unit cost is (78.68 $/GJ).
Keywords:HT-PEMFC  Cogeneration  Coke oven gas steam reforming  Exergoeconomic  Exergy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号