首页 | 本学科首页   官方微博 | 高级检索  
     


Preparation of polybenzimidazole/ZIF-8 and polybenzimidazole/UiO-66 composite membranes with enhanced proton conductivity
Affiliation:1. Middle East Technical University, Polymer Science & Technology, Ankara, 06800, Turkey;2. Atilim University, Energy Systems Engineering, Ankara, 06836, Turkey
Abstract:Metal-organic frameworks (MOFs) are considered emerging materials as they further improve the various properties of polymer membranes used in energy applications, ranging from electrochemical storage and purification of hydrogen to proton exchange membrane fuel cells. Herein, we fabricate composite membranes consisting of polybenzimidazole (PBI) polymer as a matrix and MOFs as filler. Synthesis of ZIF-8 and UiO-66 MOFs are conducted through a typical solvothermal method, and composite membranes are fabricated with different MOF compositions (e.g., 2.5, 5.0, 7.5, and 10.0 wt %). We report a significant improvement in proton conductivity compared with the pristine PBI; for example, more than a three-fold increase in conductivity is observed when the PBI-UiO66 (10.0 wt %) and PBI-ZIF8 (10.0 wt %) membranes are tested at 160 °C. Proton conductivities of the composite membranes vary between 0.225 and 0.316 S cm?1 at 140 and 160 °C. For the comparison, pure PBI exhibits 0.060 S cm?1 at 140 °C and 0.083 S cm?1 at 160 °C. However, we also report a decrease in permeability and mechanical stability with the composite membranes.
Keywords:Polybenzimidazole  Metal-organic-frameworks  Proton conductivity  Composite membranes  Hydrogen energy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号