首页 | 本学科首页   官方微博 | 高级检索  
     


Proton-exchange membrane fuel cell ionomer hydration model using finite volume method
Affiliation:1. SYMBIO, Vénissieux, France;2. FEMTO-ST Institute, FCLAB, Univ. Bourgogne Franche-Comté, CNRS, Belfort, France;3. FEMTO-ST Institute, FCLAB, Univ. Bourgogne Franche-Comté, UTBM, CNRS, Belfort, France
Abstract:In this paper a dynamic membrane electrode assembly water transport model, based on the Finite Volume Method, is presented. The purpose of this paper is to provide an accessible and reproductible model capable of real time simulation. To this aim, a detailed explanation is provided regarding the equations and methods used to compute the physical-based fuel cell model. Additionally, the model is purposely developed using basic code (on Matlab?), to not be limited to a single programming language. Two phase water transport through multi-gaseous porous media (electrodes), interfacial transport, as well as diffusion, convection, and electro-osmosis within the polymer are considered. The main novelty relies in the restructuring of all equations into a single implicit system, which can iteratively be resolved through LU decomposition. This computationally efficient method allows the model to be capable of real-time simulation, by displaying the membrane water content profile evolution on a 3D figure. For nominal PEMFC operating conditions, a dry membrane reaches 35% of its final water concentration value after 2 s, and fully converges after 20 s. The final water content profile displays an 18% gradient (9 and 11 molecules per sulfonic acid sites on the anode and cathode sides, respectively). To calibrate and validate this model, mass transfer (flowmeter) and electrical (ohmmeter) methods have been applied.
Keywords:PEMFC  Water transport  Finite volume method  Hydration  Nafion?  Ionomer  FVM"}  {"#name":"keyword"  "$":{"id":"kwrd0050"}  "$$":[{"#name":"text"  "_":"Finite Volume Method  BC"}  {"#name":"keyword"  "$":{"id":"kwrd0060"}  "$$":[{"#name":"text"  "_":"Boundary Condition  FC"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "_":"Fuel Cell  MEA"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"Membrane Electrode Assembly  CCM"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"Catalyst Coated Membrane  BP"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"Bipolar Plate  GDL"}  {"#name":"keyword"  "$":{"id":"kwrd0110"}  "$$":[{"#name":"text"  "_":"Gas Diffusion Layer  CL"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"Catalyst Layer  PEM"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"Proton Exchange Membrane  SANS"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"Small Angle Neutron Scattering
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号